Свежее
Отбор газа из ПХГ Европы в марте более чем на 25% превысил прошлогодние показателиНа севере Ростовской области отремонтируют 190 ТП и 90 км ЛЭПРУСЭЛ на выставке «Электро»: импортозамещение и технологииНа 18 ВЛ-35-110 кВ в Пермском крае установят 1200 птицезащитных устройствПоступления СПГ в Европу с терминалов в марте стали рекордными за все время наблюденийОколо 30 энергетиков Россети Новосибирск наградили в рамках собраний трудовых коллективов
Специалисты Физико-энергетического института имени Лейпунского (ФЭИ, Обнинск, входит в научный дивизион госкорпорации «Росатом») разработали проект уникального компактного и экологически безопасного ядерного энергоисточника РИФМА, который предлагается использовать для обеспечения энергией объекты, расположенные в труднодоступных и удаленных районах российской арктической зоны, включая спецобъекты Минобороны.
Как отмечается в годовом отчете ФЭИ за 2017 год, размещенном на сайте раскрытия корпоративной информации, задачу надежного и эффективного энергоснабжения автономных объектов в северной части России можно решить путем использования автономных, малогабаритных и безопасных ядерных энергоисточников электрической мощностью 10-500 киловатт, в том числе с применением так называемого выносного (внезонного) термофотовольтаического способа преобразования энергии – устройства для преобразования тепловой энергии в электрическую посредством фотоэлектрического эффекта.
В 2017 году была предложена общая компоновка такого энергоисточника РИФМА мощностью 100 киловатт, получены предварительные характеристики установки, отмечается в отчете.
В основе предложенной концепции лежит малогабаритный, размещаемый под землей, в толще грунта ядерный реактор бассейнового типа на низкообогащенном уране с водой под атмосферным давлением. Активная зона реактора охлаждается с помощью вертикально расположенных так называемых тепловых труб, внутри которых находится жидкометаллический теплоноситель литий.
В активной зоне реактора происходят ядерные реакции с выделением тепла, которое передается к зоне испарения в нижней части тепловой трубы. Увеличение мощности реактора с помощью системы управления приводит к повышению температуры тепловой трубы, находящийся в ней жидкометаллический теплоноситель плавится и испаряется, поглощая при этом теплоту испарения. Пар теплоносителя распространяется снизу вверх по тепловой трубе, где в ее верхней части конденсируется и разогревает корпус трубы до заданной рабочей температуры.
Наружная боковая поверхность корпуса трубы в зоне конденсации теплоносителя излучает полученное тепло на термофотоэлементы. Благодаря фотоэффекту в них возникает электрический ток. Таким образом, часть тепловой энергии превращается в электрическую.
Как отмечается в отчете, для РИФМы предложены фотоэлементы на основе так называемых полупроводниковых гетероструктур, обеспечивающих эффективность преобразования энергии на уровне 12-17%. Реактор рассчитан на работу в автономном режиме в течение 10 лет, без постоянного технического обслуживания.
Мы в телеграм:
Подпишитесь на наш Telegram Канал
Отбор газа из ПХГ Европы в марте более чем на 25% превысил прошлогодние показатели
Запасы газа в хранилищах Европы на 31 марта составили 33,59%…
На севере Ростовской области отремонтируют 190 ТП и 90 км ЛЭП
В течение года на ЛЭП планируют заменить почти 2 тыс…
РУСЭЛ на выставке «Электро»: импортозамещение и технологии
В московском «Экспоцентре» открылась 33-я ежегодная международная выставка «Электро».
На 18 ВЛ-35-110 кВ в Пермском крае установят 1200 птицезащитных устройств
В течение 2025 года.
Поступления СПГ в Европу с терминалов в марте стали рекордными за все время наблюдений
По итогам марта они составили около 12,7 млрд куб м,…
Около 30 энергетиков Россети Новосибирск наградили в рамках собраний трудовых коллективов
Ежегодно список достойных представителей трудовых коллективов «Россети Новосибирск» расширяет свою…