Актуально
Росатом поставил ЯТ для исследовательского реактора в УзбекистанеSOCAR и венгерская MOL подписали соглашение по участку ШамахыЕС продолжает получать из РФ до 13% газа и 2% нефтиК 2030г мировой спрос на уголь снизится на 3% по сравнению с 2025гИмпорт российской нефти в Индию в декабре превысит 1 млн б/сВ ОЭС Востока и 5 региональных энергосистемах достигнуты абсолютные исторические максимумы потребления электромощности
Ученые Томского политехнического университета (ТПУ) разработали новую многослойную архитектуру покрытий для элементов термоядерных реакторов, которая обладает высокой термической стабильностью и способностью «самозалечиваться» при работе в экстремальных условиях. Такая разработка позволит продлить срок службы оборудования реакторов, сообщили в Минобрнауки РФ.
Многослойные наноламинатные покрытия широко применяются в ядерной промышленности благодаря высокой прочности, коррозионной стойкости и устойчивости к радиационному воздействию. Однако их эксплуатационные характеристики при одновременном влиянии высоких температур и облучения остаются недостаточными. В связи с этим была предложена новая архитектура многослойного покрытия — функционально-градиентный материал (ФГМ), включающий защитный слой ниобия толщиной около 3 мкм, радиационно-стойкий слой чередующихся наноразмерных мультислоев ниобия и циркония толщиной около 1 мкм, адгезионный слой циркония толщиной около 10 мкм и подложку из сплава циркония с 1% ниобия толщиной 0,7 мм, что обеспечивает необходимую механическую прочность.
«Архитектура ФГМ на основе ниобия и циркония с управляемой градацией слоев — это не просто повторение наноламинатной структуры. Такое целенаправленное чередование материалов обеспечивает не только повышенную термическую устойчивость, но и более эффективное управление эволюцией дефектов за счет их локализации в нужных уровнях. Это позволяет перенаправлять дефекты в активные зоны, где происходит их „самозалечивание“. В простых наноламинатах активные зоны могут не совпадать с профилем повреждений, из-за чего эффективность механизмов самовосстановления снижается», — поясняет один из авторов исследования, и. о. руководителя отделения экспериментальной физики ТПУ Роман Лаптев.
Испытания новой архитектуры прошли in situ, то есть на реальном оборудовании при температурах до 900 градусов Цельсия. Во время исследования анализировались термическая стабильность и структурные изменения методами рентгеновской дифракции, спектроскопии доплеровского уширения аннигиляционной линии и просвечивающей электронной микроскопии. Данный комплексный подход позволил наблюдать эволюцию дефектов и изменения кристаллической решетки покрытия в реальном времени. Результаты показали, что при нагреве покрытие сохраняет многослойную архитектуру и плотность интерфейсов, а происходящие фазовые переходы остаются обратимыми, что позволяет материалу сохранять свои свойства.
«Комплекс in situ анализа в сочетании с традиционными методами эксперимента позволил нам доказать, что разработанная в ТПУ архитектура покрытий устойчива к термическому воздействию. Благодаря обратимости фазовых трансформаций материал способен выдерживать экстремальные циклы нагрева и охлаждения без существенной деградации. Это критически важно для оценки долговечности покрытия в условиях реальной эксплуатации», — добавил Лаптев.
В научной работе приняли участие ученые отделения экспериментальной физики Инженерной школы ядерных технологий и исследовательского ядерного реактора Томского политеха. Исследование выполнено в рамках государственного задания «Наука», а его результаты опубликованы в журнале Journal of Materials Science (Q1, IF: 3,9).
Читайте в Telegram:
Наш Телеграм
Росатом поставил ЯТ для исследовательского реактора в Узбекистане
Для исследовательского реактора ВВР-СМ в Институте ядерной физики Академии наук…
SOCAR и венгерская MOL подписали соглашение по участку Шамахы
По условиям соглашения, венгерской компании, которая будет оператором проекта, принадлежит…
ЕС продолжает получать из РФ до 13% газа и 2% нефти
В декабре Совет ЕС принял постановление о полном запрете всем…
К 2030г мировой спрос на уголь снизится на 3% по сравнению с 2025г
В текущем году спрос составит 8,85 млрд т.
Импорт российской нефти в Индию в декабре превысит 1 млн б/с
Несмотря на санкционное давление со стороны США.
В ОЭС Востока и 5 региональных энергосистемах достигнуты абсолютные исторические максимумы потребления электромощности
В ОЭС Востока 14 декабря потребление мощности достигло 7976 МВт,…