Актуально
В 2025г Юнипро нарастила выработку электроэнергии на 3,2%В 2025г Ивэнерго заменило 900 опор ЛЭПРоссети Новосибирск обеспечат электроэнергией экоград в пригороде мегаполисаНа Камчатке исследуют реку вблизи Мутновской ГеоЭС-1В 2025г Таджикистан увеличил импорт нефтепродуктов из РФ на 17,5%Объемы добычи нефти в США превысили общий показатель РФ и Саудовской Аравии
Ученые Томского политехнического университета (ТПУ) разработали новую многослойную архитектуру покрытий для элементов термоядерных реакторов, которая обладает высокой термической стабильностью и способностью «самозалечиваться» при работе в экстремальных условиях. Такая разработка позволит продлить срок службы оборудования реакторов, сообщили в Минобрнауки РФ.
Многослойные наноламинатные покрытия широко применяются в ядерной промышленности благодаря высокой прочности, коррозионной стойкости и устойчивости к радиационному воздействию. Однако их эксплуатационные характеристики при одновременном влиянии высоких температур и облучения остаются недостаточными. В связи с этим была предложена новая архитектура многослойного покрытия — функционально-градиентный материал (ФГМ), включающий защитный слой ниобия толщиной около 3 мкм, радиационно-стойкий слой чередующихся наноразмерных мультислоев ниобия и циркония толщиной около 1 мкм, адгезионный слой циркония толщиной около 10 мкм и подложку из сплава циркония с 1% ниобия толщиной 0,7 мм, что обеспечивает необходимую механическую прочность.
«Архитектура ФГМ на основе ниобия и циркония с управляемой градацией слоев — это не просто повторение наноламинатной структуры. Такое целенаправленное чередование материалов обеспечивает не только повышенную термическую устойчивость, но и более эффективное управление эволюцией дефектов за счет их локализации в нужных уровнях. Это позволяет перенаправлять дефекты в активные зоны, где происходит их „самозалечивание“. В простых наноламинатах активные зоны могут не совпадать с профилем повреждений, из-за чего эффективность механизмов самовосстановления снижается», — поясняет один из авторов исследования, и. о. руководителя отделения экспериментальной физики ТПУ Роман Лаптев.
Испытания новой архитектуры прошли in situ, то есть на реальном оборудовании при температурах до 900 градусов Цельсия. Во время исследования анализировались термическая стабильность и структурные изменения методами рентгеновской дифракции, спектроскопии доплеровского уширения аннигиляционной линии и просвечивающей электронной микроскопии. Данный комплексный подход позволил наблюдать эволюцию дефектов и изменения кристаллической решетки покрытия в реальном времени. Результаты показали, что при нагреве покрытие сохраняет многослойную архитектуру и плотность интерфейсов, а происходящие фазовые переходы остаются обратимыми, что позволяет материалу сохранять свои свойства.
«Комплекс in situ анализа в сочетании с традиционными методами эксперимента позволил нам доказать, что разработанная в ТПУ архитектура покрытий устойчива к термическому воздействию. Благодаря обратимости фазовых трансформаций материал способен выдерживать экстремальные циклы нагрева и охлаждения без существенной деградации. Это критически важно для оценки долговечности покрытия в условиях реальной эксплуатации», — добавил Лаптев.
В научной работе приняли участие ученые отделения экспериментальной физики Инженерной школы ядерных технологий и исследовательского ядерного реактора Томского политеха. Исследование выполнено в рамках государственного задания «Наука», а его результаты опубликованы в журнале Journal of Materials Science (Q1, IF: 3,9).
Читайте в Telegram:
Наш Телеграм
В 2025г Юнипро нарастила выработку электроэнергии на 3,2%
До 58,5 млрд кВтч.
В 2025г Ивэнерго заменило 900 опор ЛЭП
Отремонтировано 195 км ЛЭП всех классов напряжения.
Россети Новосибирск обеспечат электроэнергией экоград в пригороде мегаполиса
Энергетики выделят более 1,1 МВт мощности с узловой подстанции «Барышевская».
На Камчатке исследуют реку вблизи Мутновской ГеоЭС-1
Для получения интегральной оценки здоровья водной экосистемы, изучения химсостава воды…
Объемы добычи нефти в США превысили общий показатель РФ и Саудовской Аравии
Заявил министр энергетики Крис Райт.